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Control of spatiotemporal chaos in a neural network with discrete time and continuous state variables is
investigated. The chaos control is performed with the knowledge of only a part of the target information in the
memory patterns. The success rate for the pattern associations and the dependence of the search time on the
sampling number in the proposed chaos neural network are studied. By the introduction of the reinforcement
factor in the learning process, the recognition rate of the network can be much enhanced. Random and regular
samplings of the pattern for the control are tested and the successful results of the associations are demon-
strated. The chaotic behavior and recalling ability of the system are evaluated based on the analysis of the
Lyapunov spectrum of the network.

PACS number~s!: 05.45.1b, 05.50.1q, 87.10.1e

I. INTRODUCTION

Recent research in physiological science fields revealed
the existence of chaotic dynamics in some biological neural
systems@1,2#, and chaos seems to be essential in such sys-
tems. Even in high life forms, such as in the operations of the
neurons in the human brain, it is recognized that there exists
a certain chaotic dynamics in the networks. The question
naturally arises whether such chaotic dynamics plays a func-
tional role in the information processing of neural networks.
At the same time, from a theoretical viewpoint of physics,
nonlinear dynamics and spatiotemporal chaos have been in-
vestigated in a variety of extended systems, including asym-
metric neuron models@3–9#. For example, a chaotic neural
network model that responds chaotically itself has been pro-
posed by Aihara, Tanabe, and Toyoda@6# by extending the
Nagumo-Sato model@7#. As an application of chaotic dy-
namics for the information processing of neural networks,
Toyodaet al. @8# proposed an associative model with a cha-
otic neural network and indicated that such a system can be
consisted of an autonomous memory model and the model
can associate memory patterns nonperiodically. Nakamura
and Nakagawa@9# realized an associative memory that can
avoid the problems of local minima by the parameter control
technique with a chaotic neural network.

In this paper, we analyze the characteristic features of the
spatiotemporal chaos in a chaotic neural network and apply it
to an associative memory. The method proposed by Naka-
mura and Nakagawa@9# required the information for the
complete memory pattern to associate the target pattern.
Here, we propose an associative memory network with chaos
control by using only a part of the target information. It is
found that the effect of the relative inhibitory constant in the
previous network is too strong to recall the correct pattern in
our model. Therefore, we add the reinforcement factor in the
learning process to enhance the firing rate of neurons when
their output state approaches the neighborhood of the target

pattern. By the introduction of this term, the recognition rate
of the network can be much enhanced. The dependences of
the success rate and the search time on the sampling number
in the proposed system are extensively studied. The rel-
evance between the chaotic dynamics and recalling capabil-
ity of the system are investigated based on the analysis of the
Lyapunov exponents of the network. Successful associations
are obtained for both the random and regular sampling tech-
niques used in the spatiotemporal chaos control. It is noted
that the recovery of a pattern from the knowledge of the
partial information is very important for the practical appli-
cations of neural networks, such as pattern compressions and
coded data communications.

II. CHAOTIC NEURAL NETWORK

For spatiotemporal chaos control, we employ a chaotic
neural network model proposed by Aiharaet al. To begin
with, let us briefly describe the model for later use. The
model is defined by the equation with discrete time and con-
tinuous state as follows:

yi~n11!5kyi~n!1(
j51

M

wi j xj~n!2axi~n!1ai , ~1!

xi~n11!5 f „yi~n11!…, ~2!

whereyi(n) andxi(n) are the internal state and the output of
the i th neuron, respectively,M is the total number of neurons
in the network,k is a memory constant with 0<k,1 to
guarantee the convergence of the iteration,a is the relative
inhibitory constant (a.0) to restrain a firing after excita-
tions of the neurons,wi j is the connection matrix component,
andai is the external input of thei th neuron. The function
f (y) is a threshold function and usually takes the sigmoid
form as

f ~y!5tanhS y« D , ~3!

where« is a certain parameter called the temperature of neu-
rons. The second term of the right-hand side of Eq.~1! is the

*Also at Graduate School of Electronic Science and Technology,
Shizuoka University, 3-5-1 Johoku, Hamamatsu, 432 Japan. FAX:
181-53-478-1251. Electronic address: ohtsubo@eng.shizuoka.ac.jp

PHYSICAL REVIEW E MAY 1996VOLUME 53, NUMBER 5

531063-651X/96/53~5!/4502~7!/$10.00 4502 © 1996 The American Physical Society



ordinary Hopfield term, and the model defined by Eqs.~1!–
~3! returns in the Hopfield model for the special case of
k5a5ai50 @10#. The last term is a bias to the neuron and
the rest are introduced to generate chaotic dynamics in the
system. Therefore, it is considered that the chaotic neural
network model is introducing the chaotic dynamics into the
Hopfield model as a natural expansion of the latter one.

The chaotic characteristics of the network can be mea-
sured by the Lyapunov spectrum@11#. Here, we generalize
Eq. ~1! as a mapping,

y~n11!5G$y~n!%, ~4!

where G is the nonlinear mapping andy(n)
5(y1 ,y2 , . . . ,yM). WhenG is known, we iterate the fol-
lowing equation starting from an orthogonal vector
u(n)5(u1 ,u2 , . . . ,uM)

n~n11!5DG$y~n!%u~n!, ~5!

whereDG is the Jacobian matrix of the mappingG. To
calculate Lyapunov spectrum,n(n11) is orthogonalized by
the Gram-Schmit method and renormalized as follows;

n i8~n11!5n i~n11!2(
j51

i21

^n i~n11!,uj~n11!&uj~n11!,

~6!

ui~n11!5
n i8~n11!

un i8~n11!u
, ~7!

where^ & denotes an inner product. Then, the Lyapunov ex-
ponentl i is defined as

l i5 lim
K→`

1

K (
n51

K

logun i8~n11!u. ~8!

If, at least, the maximum Lyapunov exponent has a positive
value, one can confirm that the network is in chaos@11#.

III. CHAOS CONTROL FOR ASSOCIATIVE MEMORY

Let us consider the chaotic dynamics of the present net-
work model for the associative memory. First, the connec-
tion matrixwi j is defined by the autocorrelation matrix as

wi j5
1

L (
r51

L

ei
~r !ej

†~r ! , ~9!

whereL is the number of embedded patterns.e(r ) ande†(r )

are vectors of the embedded pattern and its adjoint, respec-
tively, and they satisfy the following condition:

(
i51

M

ei
~r !ei

†~s!5d rs , ~10!

whered is the Kronecker delta function. The embedded pat-
terns ofL56 with the number of neurons ofM5100 used in
the simulations are shown in Fig. 1. To investigate the cha-
otic dynamics of the network, a bifurcation diagram of the
maximum Lyapunov exponent versus the memory constant

k and the relative inhibitory constanta is shown in Fig. 2.
The black area in the figure corresponds to the positive val-
ues of the maximum Lyapunov exponent,lmax.0, whereas
the white area is for the negative values. The results show
that the network dynamics is dependent on the network pa-
rametersk anda. Similar plots of the bifurcations are ob-
tained for different values ofai , although these are not plot-
ted here.

Next, we consider the spatiotemporal control of the cha-
otic behaviors in the present network and apply it to the

FIG. 1. Set of patterns embedded in the network.

FIG. 2. Lyapunov exponent diagram versus memory constant
k and relative inhibitory constanta. M5100, «50.02, and
ai50.2 ~for all i ).
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associative memory by controlling the network parameter
values. In the control configuration, the values of the net-
work parameters are varied as a function of a control signal
m (t)(n) @9#,

k~n!5@12m~t!~n!#k~0!, ~11!

a~n!5@12m~t!~n!#a~0!, ~12!

ai~n!5@12m~t!~n!#ai~0!, ~13!

wherek(0), a(0), andai(0) are initial values of the control
parameters andt represents the suffix for one of the embed-
ded patterns, i.e., the target pattern. There are a number of
control methods to recall the correct memory pattern. Here
we employ the method where the control signal is generated
with an overlap between the output pattern and a randomly
chosen part of the target pattern. The control signal is defined
by

m~t!~n!5
1

N (
i51

N

g~t!~n,Ri !, ~14!

g~t!~n,i !5sgn@xi~n!ei
~t!#expH Uxi~n!

ei
~t! U21J , ~15!

whereN(,M ) is the sampling number andRi is an integer
number distributed randomly within 1 toM . The function
g(t)(n,i ) is defined in a way that it outputs11 for the cor-
rect recollection and21 for the completely inverse recollec-
tion. It is found from Fig. 2 that the network changes from
chaos to stable states when the control signalm (t)(n) ap-
proaches unity. In other words, the system changes from the
chaotic neural network model to the Hopfield model when
k, a, andai are close to zero. Therefore, the network defined
here has both the possibility to escape from spurious states
with chaotic transition and the function as a Hopfield model
to associate the target pattern when the output of the network
is close to the target pattern.

The value of the parametera that restrains the excitation
after the firing of a neuron exhibits a crucial influence on the
performance of the present neural network model. To avoid
successfully spurious states in the recalling process, the
value ofa must be fairly large. Meanwhile, for a large value
of a and a small sampling number, the system sometimes
fails to get out from the chaotic states and cannot reach the
Hopfield network. So a learning algorithm@5# is employed to
improve the memory search ability of the network. This al-
gorithm adapts the external input valueai during the search
for the target pattern as

if m~t!~n!>g,

then ai5@12m~t!~n!#@ai~0!1Dei
~r !# ~ iPT!,

~16!

whereg is a certain positive threshold value between 0 and
1, D is the reinforcement constant per learning process, and
T is a set of sampling neurons. With Eq.~16!, Eq. ~1! can be
rewritten as

yi~n11!5kyi~n!1(
j51

M

wi j xj~n!

2@axi~n!2D~n!ei
~r !#1ai ~ iPT!,

~17a!

yi~n11!5kyi~n!1(
j51

M

wi j xj~n!

2axi~n!1ai ~ i¹T!, ~17b!

whereD(n) is defined asD(n)5D@12m (t)(n)#. Thus, the
effect of this learning algorithm facilitates the firing prob-
ability of neurons whose output state is close to the target
@m (t)(n)>g# and makes the retrieval of the target pattern
more easily and rapidly. Thus, the network easily gets out
from the chaotic dynamics in the neighborhood of the target
pattern. On the other hand, the introduction of this term has
no influence on the network dynamics when the output state
is far form the target pattern. In the next section, some nu-
merical results for the memory search are demonstrated by
the proposed chaos control.

IV. SIMULATION RESULTS AND DISCUSSIONS

The numerical simulations have been performed by using
the proposed network model forM5100. Six images
(L56, Fig. 1! have been embedded in the network. The
black and white points in the figure correspond to the states
with ei

(r )(n)511 and21, respectively. The initial values of
the parameters,k(0), a(0), andai(0), are set toappropriate
values for which chaos is observed in the network. In the
simulations, we put these parameters values into 0.9, 0.6, and
0.2, respectively. The corresponding maximum Lyapunov
exponent is evaluated as 0.3911~.0!.

Figure 3 shows an example of the associative processes
for the target pattern ‘‘yacht.’’ In this case, the sampling
densityN/M was chosen to be12 and the initial input was a
random pattern. The reinforcement constantD was zero in
this case. In the figure, the size of the square represents the
proportion to the value ofuxi(n)u, where the black squares
are forxi(n).0, while the white ones are forxi(n),0. Even
starting from a random initial pattern, the memory search
succeeded without trapping in local minima. Therefore, it is
demonstrated that the present chaotic neural network can as-
sociate the target pattern by the appropriate chaos control.

Next, we investigate the success rate and search time for
the sampling number of the present neural network model.
The simulations of the memory search by the control were
carried out forn50;Tmax(5200). The success rateSr was
defined by the ratio of the number of the successful trials to
the total number of trials that are performed under different
initial patterns. The average search timeSt is defined by@5#

St5
(u50
S tu
SrS

, ~18!

wheretu is the time step required for the complete associa-
tion of the target pattern andS the total trial number. The
results are shown in Fig. 4. For the elements of the known
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sampling neurons, we used the values which are exactly the
same as the target patternei

(r ) as initial states. Otherwise we
used random and bipolar initial values as initial states. The
target pattern was ‘‘car’’ in Fig. 1. The reinforcement con-
stantD was varied as a parameter and four different values,
0.0, 0.1, 0.5, and 0.9, were used for the constant in the simu-
lation. For comparison, the success rate for the Hopfield
model was also calculated and displayed as black dots. In the
absence of the reinforcement constant, the success rate is
always small and the search time is long compared with
other parameter values and the Hopfield model. However,
with an appropriate choice of the reinforcement constant,
e.g.,D50.5, both the success rate and the search time are
optimized and the correct recollection can be realized even
for a small sampling number. For the Hopfield model, we
generate the initial pattern where the number of neurons that
is consistent with the target pattern is equal to the sampling
number. For a sampling number above 50% of the total neu-
rons, the successful recollection is always attained for all
parameter conditions including the Hopfield model. The av-
erage search time is shown in Fig. 4~b!. Here again the cha-

otic neural network surpasses the Hopfield model for an ap-
propriate value ofD. Especially for a small sampling
number, the search time of the chaotic neural network is
dramatically decreased compared with the Hopfield model.

Figure 5 shows the success rate for differentT maxs in the
present neural network forD50.0 to test the dependence of
the length for the search time. For the increase of the search
time Tmax, slight increase of the success rate can be seen in
low sampling number, but the difference is small elsewhere.
Obviously, this network does not improve the success rate as
compared with the Hopfield model. One of the possible rea-
sons why the recalling ability of the network withD50.0 is
inferior to that of the Hopfield model is that the relative
inhibitory factora is too strong in the neural network dy-
namics. Due to this effect, the network state keeps on behav-
ing chaotically and seldom visits the neighborhood of the
target pattern. Therefore, without or with a small value of the
reinforcement constant, the present network can avoid the
trap in local minima, but it usually behaves chaotically or
periodically without associating the target pattern.

Figure 6 shows the dependence of the success rate on the

FIG. 3. Example of the associative process for
the target pattern of ‘‘yacht.’’
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reinforcement constant for sampling numbers ofN550, 20,
and 5. When the sampling number is over 50, the proposed
~open circles! model can successfully recall the correct pat-
terns for all reinforcement constants and the success rate is
compatible with that of the Hopfield model~upper straight
broken line!. For a moderate sampling rateN520, the suc-
cess rate greatly changes depending on the value of the re-

inforcement factor. The success rate for the Hopfield model
is about 0.4~middle straight broken line!, while the maxi-
mum success rate of unity is attained in the present chaotic
neural network model~solid triangles! at D50.55. Even for
a small sampling number ofN55, the success rate of 0.4 is
obtained in the chaotic neural network~open diamonds!,
while that of the Hopfield model~lower straight broken line!
is merely 0.05. The above results indicate that the association
rate in the chaotic neural network is much improved by the
appropriate choice of the reinforcement constant especially
for moderate or small sampling numbers.

Finally, the effects of the chaotic dynamics on the asso-
ciation in the present network are investigated by comparing
the Lyapunov exponents with the success rate. The bifurca-
tion diagram of the Lyapunov exponents versus the system
parametersk(0) anda(0) have already been displayed in
Fig. 2. Here we employ the same parameter conditions used
there. Figure 7~a! shows the success rate versus the param-
eter value ofk(0) for the relative inhibitory constant of
a(0)50.6 and the bias ofai(0)50.2 ~for all i ), and Fig.
7~b! shows the Lyapunov exponents versusk(0) that corre-
spond to the variations for the cross section of the map at
a(0)50.6 in Fig. 2. The sampling number is set to be
N525 and the value of the reinforcement factor isD50.5.
The straight broken line in Fig. 7~a! denotes the success rate
for the Hopfield model. One easily finds that the high success
rate of recalling is obtained for the positive Lyapunov expo-
nent region.

Figure 8 shows the effects of the inhibitory constanta on
the success rate. Figure 8~a! represents the plot of the success
rate versus the inhibitory constant for the value of the
memory constant ofk(0)50.9, and Fig. 8~b! is the corre-
sponding Lyapunov spectrum. The straight broken line again
denotes the success rate for the Hopfield model. Although a
high success rate is obtained for a positive Lyapunov expo-

FIG. 4. Success rateSr ~a! and search timeSt ~b! versus sam-
pling number. d: Hopfield model, 3: D50.0, L: D50.1,
m:D50.5, ands: D50.9.

FIG. 5. Dependence of the success rateSr on the search step
Tmax with D50.0. d: Hopfield model, 3: Tmax5200, l:
Tmax55000, andh: Tmax510 000.

FIG. 6. Dependence of the success rateSr on the reinforcement
factor.s: N550, m: N520, andL: N55. Broken lines are the
values for the Hopfield model forN550 ~upper line!, N520 ~cen-
ter line!, andN55 ~lower line!.
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nent region (a50.5–0.7), the positive Lyapunov exponents
do not necessarily assure the high success rate of the asso-
ciation. The reason is considered as follows. Strictly speak-
ing, the retrieval process depends on the variations of the
control parameters in the recalling process, which change
from the initially assigned values to zero when the network
successfully associates the target pattern. So only the starting
dynamics is not enough to explain the success rate of the
network. To gain further insight into the association mecha-
nism, we are now investigating the relation among the suc-
cess rate, the retrieval process, and the variation of the con-
trol parameters, and the results will be presented in the
future.

We also tried chaos control in the present neural network
with regular sampling algorithm instead of random sampling.
In this case, Eq.~14! is replaced by the following regular
sampling function:

m~t!5
1

N (
i51

M H (
k51

N

d~ i2Pk!@g~t!~n,i !#J , ~19!

whereP is the spatial sampling density. For the regular sam-
pling algorithm, similar results of the associations and de-
pendences of the success rate and the search time on the
sampling number to those of the random sampling were ob-
tained by using the same set of the memory patterns.

V. CONCLUSION

We have applied the spatiotemporal chaos control to an
associative memory search in a chaotic neural network. It has
been shown that the association in the network with a partial
knowledge of the target information is successfully per-
formed with the parameter control of spatiotemporal chaos.
By the proposed learning algorithm, the performance of the
memory search has been greatly improved in comparison to
the Hopfield model. The obtained results imply the possibil-
ity of avoiding the problems of local minima in neural net-
works by appropriately applying the flexible chaotic dynam-
ics. In practice, it has been shown that the successful
association can be achieved at least for a partial input of 20%
of the total number of neurons. One of the possible applica-
tions for the proposed chaotic neural network and the method
of the associative memory recalling is the data compression
in the field of data communications.

The chaotic neural network used for the simulations may
not be the best network for such a memory search problem.
As a future issue, various chaotic neural networks should be
tested for the better memory search ability and memory ca-
pacity. We have not mentioned the memory capacity of the
present chaotic neural network in this paper. The chaotic
neural networks can store more memory patterns than the
conventional Hopfield network. Therefore, it seems worth-
while to investigate the memory capacity for such chaotic
neural networks.

FIG. 7. Dependence of the success rateSr ~a! and the Lyapunov
exponent~b! on the initial memory constantk(0). a(0)50.6 and
ai(0)50.2 ~for all i ).

FIG. 8. Dependence of the success rateSr ~a! and the Lyapunov
exponent ~b! on the initial relative inhibitory constanta(0).
k(0)50.9, andai(0)50.2 ~for all i ).
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