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Associative memory with spatiotemporal chaos control
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Control of spatiotemporal chaos in a neural network with discrete time and continuous state variables is
investigated. The chaos control is performed with the knowledge of only a part of the target information in the
memory patterns. The success rate for the pattern associations and the dependence of the search time on the
sampling number in the proposed chaos neural network are studied. By the introduction of the reinforcement
factor in the learning process, the recognition rate of the network can be much enhanced. Random and regular
samplings of the pattern for the control are tested and the successful results of the associations are demon-
strated. The chaotic behavior and recalling ability of the system are evaluated based on the analysis of the
Lyapunov spectrum of the network.

PACS numbs(s): 05.45+b, 05.50:+q, 87.10+e

[. INTRODUCTION pattern. By the introduction of this term, the recognition rate
of the network can be much enhanced. The dependences of
Recent research in physiological science fields revealethe success rate and the search time on the sampling number
the existence of chaotic dynamics in some biological neurain the proposed system are extensively studied. The rel-
systemg1,2], and chaos seems to be essential in such sygvance between the chaotic dynamics and recalling capabil-
tems. Even in high life forms, such as in the operations of thdty of the system are investigated based on the analysis of the
neurons in the human brain, it is recognized that there existsyapunov exponents of the network. Successful associations
a certain chaotic dynamics in the networks. The questiofre obtained for both the random and regular sampling tech-
naturally arises whether such chaotic dynamics plays a fundliques used in the spatiotemporal chaos control. It is noted
tional role in the information processing of neural networks.that the recovery of a pattern from the knowledge of the
At the same time, from a theoretical viewpoint of physics,partial information is very important for the practical appli-
nonlinear dynamics and Spatiotempora| chaos have been iﬁations of neural networks, such as pattern Compressions and
vestigated in a variety of extended systems, including asymcoded data communications.
metric neuron modelg3—-9]. For example, a chaotic neural
network model that responds chaotically itself has been pro- Il. CHAOTIC NEURAL NETWORK
posed by Aihara, Tanabe, and Toyddd by extending the . .
Nagumo-Sato modéi7]. As an application of chaotic dy- For spatiotemporal chaos control, we employ a chaotlc
namics for the information processing of neural networks,m_aural network_ model prpposed by Aihaeaal. To begin
Toyodaet al. [8] proposed an associative model with a cha-W'th’ let us briefly describe the model for later use. The

otic neural network and indicated that such a system can b@Odel is defined fb3|/| the .equat|on with discrete time and con-
consisted of an autonomous memory model and the moddntous state as follows:

can associate memory patterns nonperiodically. Nakamura M
andl Nakagaw49] realized an_a;somaﬂve memory that can yi(n+1):kyi(n)+2 wix(n)—ax(n)+a;, (1)
avoid the problems of local minima by the parameter control j=1

technique with a chaotic neural network.

In this paper, we analyze the characteristic features of the Xi(n+1)=f(y;(n+1)), 2
spatiotemporal chaos in a chaotic neural network and apply it
to an associative memory. The method proposed by Nakawvherey;(n) andx;(n) are the internal state and the output of
mura and Nakagaw§9] required the information for the theith neuron, respectively is the total number of neurons
complete memory pattern to associate the target patterin the network,k is a memory constant with k<1 to
Here, we propose an associative memory network with chaoguarantee the convergence of the iteratienis the relative
control by using only a part of the target information. It is inhibitory constant &>0) to restrain a firing after excita-
found that the effect of the relative inhibitory constant in thetions of the neuronsy;; is the connection matrix component,
previous network is too strong to recall the correct pattern irand a; is the external input of theéth neuron. The function
our model. Therefore, we add the reinforcement factor in thd (y) is a threshold function and usually takes the sigmoid
learning process to enhance the firing rate of neurons wheform as
their output state approaches the neighborhood of the target

f(y)ztan)‘( g) 3
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ordinary Hopfield term, and the model defined by Ed3-— MOOO000 OOOOOO000
(3) returns in the Hopfield model for the special case of EEN | | | [=EE W | [ [ [ | [
k=a=a;=0 [10]. The last term is a bias to the neuron and e  aEEEEs B
the rest are introduced to generate chaotic dynamics in the NEEEEEEEER (I [
system. Therefore, it is considered that the chaotic neural =9=5555=D- D==E%gg==%
network model is introducing the chaotic dynamics into the [ [ [ [ [ [T CIMCC
Hopfield model as a natural expansion of the latter one. %HE%%%EE%% DD=5555=5%
The chaotic characteristics of the network can be mea- " CAR BUS
sured by the Lyapunov spectruphl]. Here, we generalize HHBQ==HU\ % J%HHHUQQQ
i L] LIL |
Eq. (1) as a mapping, N munn asBssseEE | | N
(L e [ (I | (W |
¥+ )=ty @ gigeegiR  EEREed
. . . | N | ([ [ | I | [ | [
where G is the nonlinear mapping andy(n) ENEEEEENER I I
=(Y1,Y2, - - - ,¥Ym)- WhenG is known, we iterate the fol- %EEE%E&EE% E%ggggaagg
lowing equation starting from an orthogonal vector UFO HELICOPTER
u(n) = (U, Uz, ... um) RO COoOmOo0n
(N N RN | | (N
v(n+1)=DG{y(n)}u(n), (5) EEEE | mm O mE
iy e,
where DG is the Jacobian matrix of the mappir@. To COONE W RN | (N
calculate Lyapunov spectruna(n+ 1) is orthogonalized by . 5===55555=
the Gram-Schmit method and renormalized as follows; EENEEEENE | BE | [ WN
A ERR RN jDDIlIlIDD
-1 SHIP YACHT
v/(n+1)=w(n+1)— 2, (»(n+1),u;(n+1))u;(n+1),
= (6) FIG. 1. Set of patterns embedded in the network.
v (n+1) k and the relative inhibitory constat is shown in Fig. 2.
u(n+1)= (7)  The black area in the figure corresponds to the positive val-

lv{(n+1)]" ues of the maximum Lyapunov exponeht, >0, whereas
h d d Th he L the white area is for the negative values. The results show
where( ) denotes an inner product. Then, the Lyapunov Xyt the network dynamics is dependent on the network pa-

ponenth; is defined as rametersk and . Similar plots of the bifurcations are ob-

10X tained for different values dd;, although these are not plot-
= lim — 2 log| »{ (n+1)]. (8)  ted here. _ _
Koo Next, we consider the spatiotemporal control of the cha-

otic behaviors in the present network and apply it to the
If, at least, the maximum Lyapunov exponent has a positive
value, one can confirm that the network is in chfbs|.

0.0
Ill. CHAOS CONTROL FOR ASSOCIATIVE MEMORY

Let us consider the chaotic dynamics of the present net-
work model for the associative memory. First, the connec-
tion matrixw;; is defined by the autocorrelation matrix as

L

Wi = e(r)eT(r) (9) k 05

L&

wherelL is the number of embedded pattere$) and e’
are vectors of the embedded pattern and its adjoint, respec-
tively, and they satisfy the following condition:

2 el T(S)_ Ors (10 1.0

0.0 0.5 1.0
where§ is the Kronecker delta function. The embedded pat- o
terns ofL =6 with the number of neurons ™ =100 used in
the simulations are shown in Fig. 1. To investigate the cha- FIG. 2. Lyapunov exponent diagram versus memory constant
otic dynamics of the network, a bifurcation diagram of thek and relative inhibitory constant. M =100, £¢=0.02, and

maximum Lyapunov exponent versus the memory constan;=0.2 (for all i).
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associative memory by controlling the network parameter M
values. In the control configuration, the values of the net- yi(n+1)=kyi(n)+2 w;;x;(n)
work parameters are varied as a function of a control signal =1
w7 (n) [9], —[ax(n)—A(ne]+a (ieT),
k(n)=[1—u(n)]k(0), (11 (173
M
a(n)=[1-pu7(n)]a(0), (12

yi(n+ 1):|<Yi(n)+j21 wijX;(n)
ai(n)=[1—u'"(n)]a(0), (13 _

—axi(n)+a (i«T), (A7b
wherek(0), «(0), anda;(0) are initial values of the control
parameters and represents the suffix for one of the embed-WhereA(n) is defined as\(n)=A[1—u(?(n)]. Thus, the
ded patterns, i.e., the target pattern. There are a number 6ffect of this learning algorithm facilitates the firing prob-
control methods to recall the correct memory pattern. Her@bility of neurons whose output state is close to the target
we employ the method where the control signal is generatebiu(”(n)=y] and makes the retrieval of the target pattern
with an overlap between the output pattern and a randomlynore easily and rapidly. Thus, the network easily gets out
chosen part of the target pattern. The control signal is definefom the chaotic dynamics in the neighborhood of the target

by pattern. On the other hand, the introduction of this term has
no influence on the network dynamics when the output state
N is far form the target pattern. In the next section, some nu-
wP(n)= N 21 g ”(n,R), (14 merical results for the memory search are demonstrated by
|=

the proposed chaos control.

g<f><n,i>=sgr{xi<n>e§”]exp{‘

Xi(n)
g

— 1} , (15) IV. SIMULATION RESULTS AND DISCUSSIONS
e

The numerical simulations have been performed by using
whereN(<M) is the sampling number ar@ is an integer the proposed network model foM=100. Six images
number distributed randomly within 1 1. The function (L=6, Fig. 1 have been embedded in the network. The
g‘(n,i) is defined in a way that it outputs 1 for the cor- black and white points in the figure correspond to the states
rect recollection and- 1 for the completely inverse recollec- With e)(n)=+1 and— 1, respectively. The initial values of
tion. It is found from Fig. 2 that the network changes from the parameters(0), «(0), anda;(0), are set t@ppropriate
chaos to stable states when the control signél(n) ap- Vvalues for which chaos is observed in the network. In the
proaches unity. In other words, the system changes from theimulations, we put these parameters values into 0.9, 0.6, and
chaotic neural network model to the Hopfield model when0.2, respectively. The corresponding maximum Lyapunov
k, a, anda; are close to zero. Therefore, the network definedeXponent is evaluated as 0.39%D).
here has both the possibility to escape from spurious states Figure 3 shows an example of the associative processes
with chaotic transition and the function as a Hopfield modelfor the target pattern “yacht.” In this case, the sampling
to associate the target pattern when the output of the networdensityN/M was chosen to bg and the initial input was a
is close to the target pattern. random pattern. The reinforcement constAntvas zero in

The value of the parameter that restrains the excitation this case. In the figure, the size of the square represents the
after the firing of a neuron exhibits a crucial influence on theproportion to the value ofx;(n)|, where the black squares
performance of the present neural network model. To avoidre forx;(n)>0, while the white ones are fag(n) <0. Even
successfully spurious states in the recalling process, thetarting from a random initial pattern, the memory search
value ofa must be fairly large. Meanwhile, for a large value succeeded without trapping in local minima. Therefore, it is
of @ and a small sampling number, the system sometimegemonstrated that the present chaotic neural network can as-
fails to get out from the chaotic states and cannot reach theociate the target pattern by the appropriate chaos control.
Hopfield network. So a learning algorithi] is employed to Next, we investigate the success rate and search time for
improve the memory search ability of the network. This al-the sampling number of the present neural network model.

gorithm adapts the external input valagduring the search The simulations of the memory search by the control were
for the target pattern as carried out fom=0~T,{=200). The success raf was

defined by the ratio of the number of the successful trials to
it w(n)=y, the total number of trials that are performed under different

initial patterns. The average search tieas defined by 5]
then a=[1—u?(n)][a(0)+Ae"] (ieT), s
(16) St:2u=0tu (18)

S$S

wherey is a certain positive threshold value between 0 and
1, A is the reinforcement constant per learning process, andheret, is the time step required for the complete associa-
T is a set of sampling neurons. With E46), Eq.(1) can be tion of the target pattern and the total trial number. The
rewritten as results are shown in Fig. 4. For the elements of the known
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sampling neurons, we used the values which are exactly thetic neural network surpasses the Hopfield model for an ap-
same as the target pattenzﬁ) as initial states. Otherwise we propriate value ofA. Especially for a small sampling
used random and bipolar initial values as initial states. Theiumber, the search time of the chaotic neural network is
target pattern was “car” in Fig. 1. The reinforcement con- dramatically decreased compared with the Hopfield model.
stantA was varied as a parameter and four different values, Figure 5 shows the success rate for differ€gi,,s in the

0.0, 0.1, 0.5, and 0.9, were used for the constant in the simyresent neural network fak=0.0 to test the dependence of
lation. For comparison, the success rate for the Hopfieldhe length for the search time. For the increase of the search
model was also calculated and displayed as black dots. In thiéme T, Slight increase of the success rate can be seen in
absence of the reinforcement constant, the success rate l®av sampling number, but the difference is small elsewhere.
always small and the search time is long compared wittObviously, this network does not improve the success rate as
other parameter values and the Hopfield model. Howeveigompared with the Hopfield model. One of the possible rea-
with an appropriate choice of the reinforcement constantsons why the recalling ability of the network with= 0.0 is
e.g.,A=0.5, both the success rate and the search time aieferior to that of the Hopfield model is that the relative
optimized and the correct recollection can be realized evemhibitory factor « is too strong in the neural network dy-
for a small sampling number. For the Hopfield model, wenamics. Due to this effect, the network state keeps on behav-
generate the initial pattern where the number of neurons thamg chaotically and seldom visits the neighborhood of the
is consistent with the target pattern is equal to the samplingarget pattern. Therefore, without or with a small value of the
number. For a sampling number above 50% of the total neureinforcement constant, the present network can avoid the
rons, the successful recollection is always attained for altrap in local minima, but it usually behaves chaotically or
parameter conditions including the Hopfield model. The av-periodically without associating the target pattern.

erage search time is shown in Figh#l Here again the cha- Figure 6 shows the dependence of the success rate on the
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(b) is about 0.4(middle straight broken line while the maxi-

mum success rate of unity is attained in the present chaotic

neural network mode(solid triangle$ at A=0.55. Even for

a small sampling number =5, the success rate of 0.4 is

obtained in the chaotic neural netwotkpen diamonds

while that of the Hopfield modelower straight broken line

is merely 0.05. The above results indicate that the association

rate in the chaotic neural network is much improved by the
ppropriate choice of the reinforcement constant especially

FIG. 4. Success rat§, (a) and search timé&; (b) versus sam-
pling number. @: Hopfield model, X: A=0.0, ¢: A=0.1,
A:A=05, andO: A=0.9.

reinforcement constant for sampling numberdN\at 50, 20,
and 5. When the sampling number is over 50, the proposefl. \oderate or small sampling numbers.
(open circleg model can successfully recall the correct pat—. Finally, the effects of the chaotic dynamics on the asso-
terns fqr all rglnforcement constants and the Success rate [3qiion in the present network are investigated by comparing
compatible with that of the Hopfield modelipper straight 4 Lyapunov exponents with the success rate. The bifurca-
broken ling. For a moderate samp!lng rake=20, the suc- 5 diagram of the Lyapunov exponents versus the system
cess rate greatly changes depending on the value of the rﬁérametersk(O) and a(0) have already been displayed in
Fig. 2. Here we employ the same parameter conditions used
there. Figure #®) shows the success rate versus the param-
eter value ofk(0) for the relative inhibitory constant of
i T T T T T T T T4 «(0)=0.6 and the bias 0&;(0)=0.2 (for all i), and Fig.
r . 1 7(b) shows the Lyapunov exponents ver$®) that corre-
® 1 spond to the variations for the cross section of the map at
1 «a(0)=0.6 in Fig. 2. The sampling number is set to be
. 3 ] N=25 and the value of the reinforcement factoAis-0.5.
] The straight broken line in Fig.(@ denotes the success rate
e | for the Hopfield model. One easily finds that the high success
rate of recalling is obtained for the positive Lyapunov expo-
i | nent region.
0 X . . . L . . . L Figure 8 shows the effects of the inhibitory constandn
0 » 3 the success rate. FiguréaBrepresents the plot of the success
Sampling number rate versus the inhibitory constant for the value of the
memory constant ok(0)=0.9, and Fig. &) is the corre-
FIG. 5. Dependence of the success rateon the search step sponding Lyapunov spectrum. The straight broken line again
Tmax With A=0.0. @: Hopfield model, X: T,,=200, ¢: denotes the success rate for the Hopfield model. Although a
T max= 5000, andJ: T,,4= 10 000. high success rate is obtained for a positive Lyapunov expo-
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nent region ¢=0.5-0.7), the positive Lyapunov exponents V. CONCLUSION

do not necessarily assure the high success rate of the asso-\We have applied the spatiotemporal chaos control to an
ciation. The reason is considered as follows. Strictly speakassociative memory search in a chaotic neural network. It has
ing, the retrieval process depends on the variations of thBeen shown that the association in the network with a partial
control parameters in the recalling process, which changgnowledge of the target information is successfully per-
from the initially assigned values to zero when the networkformed with the parameter control of spatiotemporal chaos.
successfully associates the target pattern. So only the startilgy the proposed learning algorithm, the performance of the
dynamics is not enough to explain the success rate of thmemory search has been greatly improved in comparison to
network. To gain further insight into the association mechathe Hopfield model. The obtained results imply the possibil-
nism, we are now investigating the relation among the sucity of avoiding the problems of local minima in neural net-
cess rate, the retrieval process, and the variation of the corworks by appropriately applying the flexible chaotic dynam-
trol parameters, and the results will be presented in thes. In practice, it has been shown that the successful
future. association can be achieved at least for a partial input of 20%
We also tried chaos control in the present neural networlgf the total number of neurons. One of the possible applica-
with regular sampling algorithm instead of random sampling tions for the proposed chaotic neural network and the method
In this case, Eq(14) is replaced by the following regular of the associative memory recalling is the data compression
sampling function: in the field of data communications.
The chaotic neural network used for the simulations may
1 M N not be the best network for such a memory search problem.
wD==> 1> si-Pk[g(n,i)]t, (19  As a future issue, various chaotic neural networks should be
N = (=1 tested for the better memory search ability and memory ca-
pacity. We have not mentioned the memory capacity of the
whereP is the spatial sampling density. For the regular sampresent chaotic neural network in this paper. The chaotic
pling algorithm, similar results of the associations and deneural networks can store more memory patterns than the
pendences of the success rate and the search time on tbenventional Hopfield network. Therefore, it seems worth-
sampling number to those of the random sampling were obwhile to investigate the memory capacity for such chaotic
tained by using the same set of the memory patterns. neural networks.
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